Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(11): eadd5582, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930720

RESUMO

Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.


Assuntos
Povo Asiático , Genoma , Humanos , Tibet , Genética Humana , Ásia Oriental
2.
J Genet Genomics ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36933795

RESUMO

The settlement of the Tibetan Plateau epitomizes human adaptation to a high-altitude environment that poses great challenges to human activity. Here, we reconstruct a 4,000-year maternal genetic history of Tibetans using 128 ancient mitochondrial genome data from 37 sites in Tibet. The phylogeny of haplotypes M9a1a, M9a1b, D4g2, G2a'c, and D4i show that ancient Tibetans shared the most recent common ancestor (TMRCA) with ancient Middle and Upper Yellow River populations around the Early and Middle Holocene. In addition, the connections between Tibetans and Northeastern Asians varied over the past 4,000 years, with a stronger matrilineal connection between the two during 4,000-3,000 BP, and a weakened connection after 3,000 BP, that were coincident with climate change, followed by a reinforced connection after the Tubo period (1,400-1,100 BP). Besides, an over 4,000-year matrilineal continuity was observed in some of the maternal lineages. We also found the maternal genetic structure of ancient Tibetans was correlated to the geography and interactions between ancient Tibetans and ancient Nepal and Pakistan populations. Overall, the maternal genetic history of Tibetans can be characterized as a long-term matrilineal continuity with frequent internal and external population interactions that were dynamically shaped by geography, climate changes, as well as historical events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...